The sunflower
It bows down to the Sun
The image of resilience.
Showing posts with label renewables. Show all posts
Showing posts with label renewables. Show all posts

Saturday, May 20, 2023

The Garden of Forking Paths: Renewables are an Opportunity we Cannot Afford to Miss

  

"El jardín de senderos que se bifurcan" (J.L. Borges)

Recently, Simon Michaux argued that the transition to renewable energy is not possible for the lack of sufficient mineral resources. This conclusion was criticized by Nafeez Ahmed in a recent post. As usual in our polarized world, that led to a heated discussion based on opposing views. My opinion is that both Michaud and Ahmed are right but they see the question from different points of view. If you allow me, Ahmed is more right because he shows that the future is not running on a fixed path. Rather, it is a garden of forking paths. If we choose the right path, the transition is possible and will lead us to a better world. 

Do you remember the story of the boy who cried wolf? It tells you that you shouldn't cry wolf too many times but also that the wolf will eventually come. It illustrates how our destiny as human beings is to always choose extreme viewpoints: either we are too afraid of the wolf, or we believe it doesn't exist. Indeed, Erwin Schlesinger said, "human beings have only two modes of operation: complacency and panic.

This dichotomy is especially visible in the current debate on the "Energy Transition" that recently flared in an exchange between Simon Michaux and Nafeez Ahmed, the first maintaining that the transition is impossible, the second arriving at the opposite conclusion. In my modest opinion, Michaud's work is correct within the limits of the assumptions he made. But these assumptions are not necessarily right. 

Models may be perfectly correct, but still unable to predict the future. 

If you really believe that they can, you are bound to make enormous mistakes -- as we saw in the way the recent pandemic was (mis)managed. 

Models are there to understand the future, not to predict it. 

The future is a garden of forking paths. Where you go depends on the path you choose. But you still need to follow one of the available paths. 

______________________________________

Now, let me try to examine Michaux's work and Ahmed's rebuttal in light of these considerations. I went through Michaux's report, and I can tell you that it is well done, accurate, full of data, and created by competent professionals. That doesn't mean it cannot be wrong, just like the peak oil date was proposed by competent professionals but turned out to be wrong. The problem is evident from the beginning: it is right there, in the title. 

Assessment of the Extra Capacity Required of Alternative Energy Electrical Power Systems to Completely Replace Fossil Fuels 

You see? Michaux assumes from the start that we need "extra capacity" from "alternative" energy in order to "completely replace" fossil fuels. If the problem is stated in these terms, the answer to the question of the feasibility of the transition can only be negative. 

Alas, we didn't need a report of 985 pages to understand that. It was obvious from the beginning. The limits of mineral resources were already shown in 1972 by the authors of "The Limits to Growth," the report sponsored by the Club of Rome. We know that we have limits; the problem is which paths we can choose within these limits. 

This question is often touched on in Michaux's report when he mentions the need to "think outside the box" and to change the structure of the system. But, eventually, the result is still stated in negative terms. It is clear from the summary, where Michaux says, "The existing renewable energy sectors and the EV technology systems are merely steppingstones to something else, rather than the final solution." This suggests that we should stick to fossil fuels while waiting for some miracle leading us to the "final" solution, whatever that means. This statement can be used to argue that renewables are useless. Then, it becomes a memetic weapon to keep us stuck to fossil fuels; an attitude which can only lead us to disaster. 

Nafeez Ahmed perfectly understood the problems in his rebuttal. Ahmed notes several critical points in Michaud's report; the principal ones are underestimating the current EROI of renewables and the recent developments of batteries. That leads him to the statement that renewables are not really "renewable" but, at most, "replaceable." Which is simply wrong. The EROI of renewables is now large enough to allow the use of renewable energy to recycle renewable plants. Renewables are exactly that: renewable. 

You could argue that my (and Ahmed's) evaluation of the EROI of renewables is over-optimistic. Maybe, but that's not the main point. Ahmed's criticism is focused on the roots of the problem: we need to take into account how the system can (and always does) adapt to scarcity. It follows different paths among the many available. Ahmed writes: 

...we remain trapped within the prevailing ideological paradigm associated with modern industrial civilisation. This paradigm is a form of reductive-materialism that defines human nature, the natural world, and the relationship between them through the lens of homo economicus – a reduction of human nature to base imperatives oriented around endless consumption and production of materially-defined pursuits; pursuits which are premised on an understanding of nature as little more than a repository of material resources suitable only for human domination and material self-maximisation; in which both human and nature are projected as separate and competing, themselves comprised of separate and competing units.

Yet this ideology is bound up with a system that is hurtling toward self-destruction. As an empirical test of accuracy, it has utterly failed: it is not true because it clearly does not reflect the reality of human nature and the natural world.

It’s understandable, then, that in reacting to this ideology, many environmentalists have zeroed in on certain features of the current system – its predatory growth trajectory – and sought out alternatives that would seem to be diametrically opposed to those regressive features.

One result of this is a proliferation of narratives claiming that the clean energy transformation is little more than an extension of the same industrialised, endless growth ideological paradigm that led us to this global crisis in the first place. Instead of solving that crisis, they claim, it will only worsen it.

Within this worldview, replacing the existing fossil fuel energy infrastructure with a new one based on renewable energy technologies is a fantasy, and therefore the world is heading for an unavoidable contraction that will result in the demise of modern civilisation.  ... Far from being a sober, scientific perspective, this view is itself an ideological reaction that represents a ‘fight or flight’ response to the current crisis convergence. In fact, the proponents of this view are often as dogmatically committed to their views as those they criticise. ....

Recognising the flaws in Michaux’s approach does not vindicate the idea that the current structures and value-systems of the global economy should simply stay the same. On the contrary, accelerating the energy and transport disruptions entails fundamental changes not only within these sectors, but in the way they are organised and managed in relation to wider society.

My critique of Michaux doesn’t justify complacency about metals and minerals requirements for the clean energy transformation. Resource bottlenecks can happen for a range of reasons as geopolitical crises like Russia's war in Ukraine make obvious. But there are no good reasons to believe that potential materials bottlenecks entail the total infeasibility of the transition.

... we face the unprecedented opportunity and ecological necessity to move into a new system. This system includes the possibilities of abundant clean energy and transport with diminishing material throughput, requiring new circular economy approaches rooted in respect for life and the earth; and where the key technologies are so networked and decentralised that they work best with participatory models of distribution and sharing. This entails the emergence of a new economy with value measured in innovative ways, because traditional GDP metrics focusing on ever-increasing material throughput will become functionally useless.

If you can, please, try to examine these statements by Ahmed with an open mind because he perfectly frames the problem. And never forget one thing: the future is not a single path toward catastrophe. It is a garden of forking paths. We are bound to follow one of these paths: we don't know which one yet, but not all of them lead to the Seneca Cliff. In the transition to a renewable energy system, we can adapt, reduce demand, improve efficiency, deploy new technologies, and simply be happy with a more limited supply of energy at some moments. It is only the rigidity of our mental models that make us think that there are no alternatives to fossil fuels. 


Thursday, May 18, 2023

Renewables are not a cleaner cockroach, they are a new butterfly. A discussion with Dennis Meadows

  

Dennis Meadows (left in the image) and Ugo Bardi in Berlin, 2016


A few days ago, I received a message from Dennis Meadows, one of the authors of the 1972 study "The Limits to Growth," about a previous post of mine on "The Seneca Effect." I am publishing it here with his kind permission, together with my comments, and his comments on my comments. I am happy to report that after this exchange we are "99% in agreement."


Ugo, 

I read with interest you review of the Michaux/Ahmed debate. Normally I greatly benefit from your writing. But in this case it seemed to me that your text totally avoided addressing the central point - replacing fossil fuels as an energy source with renewables will require enormous amounts of metals and other resources which we have no reasonable basis for assuming will be available. It is not true that peak oil was presented principally as a prediction. Rather critics of Hubert's original analysis misrepresented it as an effort to predict in order to ridicule it -  just as Bailey did for the Limits to Growth natural resource data from World3. I was struck that your critique of Michaux did not contain a single piece of empirical data - the strong point of his research. Rather you engaged in what I term "proof by assertion."

I am personally convinced that there is absolutely no possibility for renewables to be expanded sufficiently that they will support current levels of material consumption. I attach the text of a memo I recently wrote to other members of the Belcher group stating this belief (*). 

Best regards Dennis Meadows

_____________________

Dear Dennis, 

first of all, it is always a pleasure to receive comments from you. It is not a problem to be in disagreement on some subjects -- the world would be boring if we all were! Besides, I think our disagreement is not so large once we understand certain assumptions. 

Let me start by saying that I fully agree with your statement that "there is absolutely no possibility for renewables to be expanded sufficiently that they will support current levels of material consumption." Not only is it impossible, but even if it were, we would not want that!

So, what do we disagree about? It is about the direction to take.  The fork in the path leads in two different directions depending on the efficiency of renewable technologies: Path 1): renewables are useless, and Path 2): renewables are just what we need

I strongly argue for Path 2) in the sense that we definitely do NOT need to "support current levels of material consumption" to create a sustainable and reasonably prosperous society. But let me explain what I mean by that.  

First, in my opinion, the problem with Michaux's report is that it underestimates the efficiency of renewable technologies. He says that renewables are not really renewable, just "replaceable." He, like others who use this term, means that the plants that we are now building will not be replaceable once fossil fuels are gone. In this case, creating a renewable infrastructure will be a waste of resources and energy (Path 1). 

This view may have been correct until a few years ago, but it is now obsolete. The recent scientific literature on the subject indicates that the efficiency of renewable technologies (expressed in terms of EROI, energy return on energy invested) is now significantly better than that of fossil fuels. Furthermore, it is large enough that the materials used can be recycled using renewable energy. There is a vast literature on this subject. On the specific question of the EROI, I suggest to you this paper by Murphy et al. You can also find an extensive bibliography of the field in our recent paper,  "On the history and future of 100% renewable research." 

Of course, not everything is easy to recycle, and a future renewable infrastructure will have to avoid the use of rare metals (such as platinum for fuel cells) or metals that are not rare, but not abundant enough for the task (such as copper, that will have to be largely replaced by aluminum). That is possible: the current generation of wind and PV plants is mostly based on abundant and recyclable materials. Doing even better is part of the natural evolution of technology. What we can't recycle, we won't use. 

There is a much more fundamental point in this discussion. It is the very concept that we need renewables to be able to "replace fossil fuels," in the sense of matching in quantitative terms the energy produced today (in some views, even exceeding it in order to "keep the economy growing"). This is impossible, as we all agree. The point is that renewables will greatly reduce the need for energy and materials to keep a complex civilization working. If you think, for instance, of how inefficient and wasteful our fossil-based transportation system is, you see that by switching to electric transportation and shared vehicles, we can have the same services for a much smaller consumption of resources. This concept has been expressed by Tony Seba in a form that I interpret as, "Renewables are not a cleaner caterpillar-- they are a new butterfly"

That doesn't mean that the geological limits of the transition aren't to be taken into account; the butterfly cannot fly higher than a certain height. Then, it may well be that we won't be able to move to renewables fast enough to avoid a societal, or even ecosystemic, crash. On this point, please take a look at a paper that I co-authored, where we used the term "the sower's strategy" to indicate that the transition is possible, but it will need hard work, as the peasants of old knew. But staying with fossil fuels is leading us to disaster (as you correctly say in the document for the Balaton group) while moving to nuclear fission simply means exchanging a fossil fuel (hydrocarbons) for another fossil fuel (uranium). Going renewables is a fighting chance, but I believe it is the only chance we have.   

There is an even more fundamental point that goes beyond a certain technology being more efficient than another. Going renewables, as Nafeez Ahmed correctly points out, is a switch from a predatory economy to a bioeconomy.  Our industrial sphere should imitate the biosphere that has been using minerals from the Earth's crust on land for the past 350 million years (at least) and never ran out of anything. As I said elsewhere, we need to do what the biosphere does, that is:

1. Use only minerals that are abundant.
2. Use them sparingly and efficiently.
3. Recycle ferociously. 

If we can do that, we have a unique opportunity in the history of humankind. It means we can build a society that does not destroy everything in order to satisfy human greed. Can we do it? As always, reality will be the ultimate judge. 

Ugo


__________________________________________________________________
The answer from Dennis Meadows

Ugo, 

Thank you for sending me your article. I agree that the main difference of opinion lies in the direction to take. I am reminded of the defining characteristic of professors - two people who agree on 99% and spend all their time focusing on and debating the other one percent. Because I largely agree with you, my only relevant comment on what you say is that you have overly limited our options: 

So, what do we disagree about? It is about the direction to take.  The fork in the path leads in two different directions depending on the efficiency of renewable technologies: Path 1): renewables are useless, and Path 2): renewables are just what we need

I would not choose either path; rather I believe it is time to quit focusing on fossil energy scarcity as a source of our problems and start concentrating on fragility. The debate -renewables versus fossil - is a distraction from considering the important options for increasing the resilience of society.

Dennis Meadows




___________________________________________

A minor point. You say, "It is not true that peak oil was presented principally as a prediction." I beg to differ. I have been a member of ASPO (the Association for the Study of Peak Oil) almost from inception and part of its scientific committee as long as the association existed. And I can say that one of the problems of the approach of peak oilers was a certain obsession with the date of the peak. That doesn't disqualify a group of people whom I still think included some of the best minds on this planet during that period. The problem was that few of them were experts in modeling, and models are like weapons: you need to know the rules before you try to use them. By the way, you and your colleagues didn't make this mistake in your "Limits to Growth" in 1972; correctly, you were always careful of presenting a fan of scenarios, not a prediction. Later on, Bailey and his ilk accused you of having done what you didn't do: "wrong predictions." But that was politics, another story. 

_____________________________________________________

(*) Statements about being realistic about technology, alternative energy, and sustainability
Dennis Meadows

April 11, 2023 message to the Balaton Group

Dear Colleagues,

I have often described politics as the art of choosing which of several impossible outcomes you most prefer. It is important to envision good outcomes. It may be useful to strive for them. But it is important to be realistic. The recent discussion about technology, alternative energy, and sustainability are based on several implicit assumptions, which I believe are unrealistic. At the risk of being an old grump, and recognizing my own limited vision, I list here some statements that I believe from the study of science, history, and human nature to be realistic.

#1: There is no possibility that the so-called renewable energy sources will permit the elimination of fossil fuels and sustain current levels of economic activity and material well- being. The scramble for access to declining energy sources is likely to produce violence. 

#2: The planet will not sustain anywhere close to 9 billion people at living standards close to their aspirations (or our views about what is fair).


#3: Sustainable development is about how you travel, not where you are going.

#4: The privileged will not willingly sacrifice their own advantages to reduce the gap between the rich and the poor (witness the US.) They will lose their advantages, but unwillingly.

#5: The rapidly approaching climate chaos will erode society's capacity for constructive action before it prompts it.


#6: Expansion and efficiency are taken as unquestioned goals for society. They need to be replaced by sufficiency and resilience.

#7: History does not unfold in a smooth, linear, gradual process. Big, drastic discontinuities lie ahead - soon. 

#8: When a group of people believe they must choose between options that offer more order or those affording greater liberty, they will always opt for order. 

Unfortunately so, since it will have grave implications for the evolution of society’s governance systems. Dictators will always promise less chaos than Democrats.

Sunday, January 15, 2023

Setting the record straight on the EROI from renewables. It is much better than that of fossil fuels





The analysis performed herein represents a much-needed update and harmonization of the EROI literature, and it advances the conversation surrounding the viability of renewable resources in the energy transition process. A common argument is that the EROIs from renewable energy technologies are supposedly lower than those provided by fossil fuels, and that transitioning to RE technologies would therefore result in a large loss in net energy. The results of this analysis rebuke that sentiment, noting that the three most important technologies for the energy transition—wind, PV, and hydropower—all have EROIs at or above 10 (even when the output is weighted in terms of primary energy equivalent assuming a future-proof life-cycle grid efficiency of ηG = 0.7, i.e., 1 unit of electricity per 1.4 units of primary energy). This means that more than 90% of the energy produced by these technologies is delivered to society as net energy. 

Perhaps more interesting still, the EROIs from liquid fuels, including the EROI from conventional oil production, are less than 10 once the costs of refining and delivery to the point-of-use are included. Oil is widely considered the most important fuel for the economy, used mostly in the transportation sector. This means that oil delivers less net energy to society for each unit invested in extraction, refining, and delivery than PV or wind. The transition to electric vehicles, according to these results, will actually increase the amount of net energy delivered to society (even more so when considering the higher efficiency of electrical power trains vs. internal combustion engines). 

It is clear from these results that EROI estimates at the point of extraction can be wildly misleading. As a case in point, even if crude oil were measured to have an EROI of 1000 or more at the point of extraction, the corresponding EROI at the point of use, using global average data for the energy “cost” of the process chain, would still only be a maximum of 8.7. Furthermore, as the quality of oil, gas and coal continue to decline in the future, the energy “cost” of the associated process chains will increase, further reducing the EROIs. On the other hand, as the technologies used to harness renewable energy improve, the corresponding EROIs will continue to increase in the future.

Thursday, December 22, 2022

A Christmas Post: The Miracle of Renewables



by Ugo Bardi


This is a post that I wrote for the Italian newspaper "Il Fatto Quotidiano." For this reason, it is simplified and short, yet it says what's needed to understand the revolution we are going through that will change the world in the coming years. If you are interested in the source of the data on which I am basing my considerations, you can find them on Lazard.com. So, Merry Christmas, and never despair. Sometimes, miracles happen! 


Miracles are not so frequent and, if one has serious health problems, it is not probable that a swim in the Lourdes pool will solve them. However, it is also true that sometimes things change quickly, opening up new possibilities. That's what's happening with renewable energy. Talking about a "miracle" is a bit much, I know, but recent technological developments have made available to us a tool that until a few years ago we didn't even dream of having. And this could solve problems that once seemed unsolvable.

For years, I've been lecturing about climate change and other looming worries, such as oil depletion. Usually, the people who came to listen to me were prepared for a message that was not exactly reassuring, but the question was what to do about it. At the end of the conference, a debate normally ensued in which the same things were said: ride a bicycle, turn down the thermostat in the house, install double glazing panes on the windows, use low energy light bulbs, things like that.

It was a little soothing ritual but, in reality, everyone knew that these weren't real solutions. Not that they're useless, but they're just a light layer of green on a system that continues to depend on fossil fuels to function. We have been talking about double glazing and bicycles for at least twenty years, but CO2 emissions continue to increase as before. Actually, faster than before. If we don't go to the heart of the problem, which is to eliminate fossil fuels, we will get nowhere. But how to do it? Until a few years ago, there seemed to be no way except to go back to tilling the fields by hand, as our ancestors did during the Middle Ages.

But today things have changed radically. You probably didn't notice it, caught up in the debate on politics. But it doesn't matter whether the right or the left wins. Change, the real one, is coming with renewable technologies. Wind and photovoltaic plants have been optimized and scaling factors have generated massive savings in production costs. Today, a kilowatt-hour produced by a photovoltaic panel costs perhaps a factor of 5-10 less than a kilowatt-hour from natural gas (and maybe a factor of 5 less than a nuclear kilowatt-hour) (source). We used to call renewables "alternative energy," but today all others are "alternative."

Furthermore, producing energy with modern renewable technologies does not pollute, does not require non-recyclable materials, does not generate greenhouse gases, does not generate local pollution, and nobody can bomb the sun to leave us without energy. Now, don't make me say that renewables have automatically solved all the problems we have. It is true that today they are cheap, but it is also true that they are not free. Then, investments are needed to adapt energy infrastructure throughout the country, to create energy storage systems, and much more. These are not things that can be done in a month, or even in a few years. There is talk of a decade, at least, to arrive at an energy system based mainly on renewables.

But it is also true that every journey begins with the first step. And now we see ahead of us a road ahead. A road that leads us to a cleaner, more prosperous, and hopefully less violent world. I haven't stopped going around giving conferences but, now, I can propose real solutions. And it's not just me who noticed the change. In the debate, today you can feel the enthusiasm of being able to do something concrete. Many people ask if they can install solar panels at home. Others say they've already done it. Some mad (and rightfully so) at the bureaucracy that prevents them from installing panels on their roof or in their garden. You see the changed trend also on social media.

There is always someone who speaks out against renewables reasoning like the medieval flagellants who went around shouting "remember that you must die". But there are also those who respond in kind, like, "good riddance, live happily in your cave together with the other cavemen." If you have a south-facing balcony (and if your municipality doesn't sabotage your idea), you can already install photovoltaic panels hanging from the railing that will help you reduce your electricity bill. No paperwork needed! (another small miracle). One step at a time, we will succeed!




Friday, October 7, 2022

Hating Renewable Energy: Something Went Wrong with People's Heads

 


I recently published a post on the current troubles with the supply of energy to Europe on my blog "The Seneca Effect." The post went viral, a little, and had more than 10,000 visualizations according to "Google Analytics." Most commenters agreed with my interpretation of the current political and strategic situation, but I also received a side stream of insults by people who, for some reason, objected to my statement that renewables are "much cheaper than fossil fuels and capable of replacing them." 

The commenter above said that I am a "complete clueless moron," another one said that I suffer of ignorant bias & agenda, others that I am in the payroll of the WEF, and another one asked "did they accept your application? How many virgins do you get?"

You can take these insults in stride, in a sense they are funny. But the Web is a garden of poisoned mushrooms and it takes little to become the target of a coordinated mobbing action, just like it happened recently to Prof. Desmet, in part with the same accusation, that is of belonging to the WEF.

Now, I understand that some subjects are politically charged, such as Covid vaccines, especially if they are supposed to be mandatory. And I understand that people feel hurt at what they see as an unacceptable intrusion of the state in their private sphere, and because of that, they will react strongly. Without going to the extreme of saying that vaccines are bioweapons designed to kill us, I agree with the idea that they should NOT be mandatory.

But, in this case, come on! All I said is that at present renewables are considerably less expensive than fossil fuels (and of nuclear energy, too). And I base this statement on the available data. You don't believe the data? Fine, then produce different data, but don't just react with insults. And don't react by linking to data that are, by now, obsolete. Most of the criticism against renewable energy is based on data that are decades old, often going back to the last century. 

On the basis of this, I think it IS possible to rebuild a functioning society based on renewables producing energy flows of the same order of magnitude as the present production (I recently coauthored a paper on this subject). I may be wrong, sure, and obviously it is not something we can do in a short time. It will take decades, at least. But I don't see why people should get mad at the idea that renewables can help us a lot in this difficult moment. Looks like you try to save someone who's drowning, and he refuses to touch your extended hand because you didn't disinfect it against viruses. 

So, what goes wrong inside people's heads? I think I should ask to my friend Chuck Pezeshky, an expert on empathy and how people deal with each other. Maybe he could write a post on his blog on this subject -- and I think he should. But, no matter what we say or do, I am afraid that plenty of people will keep insulting those who promote renewable energy. As long as they limit themselves to written insults, it is fine, but..............






Sunday, July 17, 2022

A new Revolution in China!

 


Unnoticed, unreported, sometimes despised, the renewable revolution is coming. And, soon, it will be unstoppable. China is leading the way. 

From Taiyang news

"While the capacity it would bring online is not clear, one can safely assume it would be somewhere in the higher double digit or even 3 digit GW level. It would be a great help for the country as it makes efforts to achieve carbon neutrality before 2060"



Sunday, July 3, 2022

We must do more to promote renewable energy. Otherwise, we risk losing the battle

 


Above, you can see the answer to a question about renewable energy given by the "Leonardo" AI system, one of the best available to the public. Leonardo works by parsing a huge database downloaded from the Web, searching for an answer on the basis of the popularity and the reputation of the sites it examines. So, you can see it as a special kind of search engine that will focus on a specific question and give you an answer weighed for relevance and diffusion. You can also see it as an instant "opinion poll" that tells you what the opinion leaders are thinking. 

This answer about renewables is deeply worrisome. It means that the opinion leaders believe the legend (*) that renewable energy is an appendage of fossil fuels and that it cannot stand by itself without the support of fossil energy. It confirms what you can note if you examine what is being said in the social media: a large number of "environmentalists" seem to have engaged in a personal crusade to denigrate renewables. 

In Sweden, where elections will be held in September, one of the main issues right now is the centre/right promise to build 10 new reactors and to finance the investment partly by obliging wind and solar power systems to pay an extra fee. Nobody among the proposers seems to be worried about how long it will take to build these reactors, and where the uranium needed to power them will come from. This is not just worrisome. It is a tragedy in the making. 

The problem, here, is that Leonardo (just like the general public) has no access to the data published in scientific journals, usually kept hidden behind paywalls. Which means, in practice, that Leonardo does not parse the high quality information of refereed scientific journals. The result is that Leonardo makes the same mistakes many people do, swayed by the by special interest lobbies, such as the fossil fuel industry. 

Once more, humans show their capability of shooting themselves in their feet. Governments pay huge amounts of money to scientists to develop and evaluate renewable energy technologies. Scientists give to publishers their results for free, then the publishers make these results available to the public at exorbitant fees, even thought the public has already paid for these results with their taxes. 

We have to rethink of what we are doing as scientists, researchers, and developers. It is not possible to waste so much effort because of these absurd rules, especially in a moment when renewable energy is desperately necessary in a world where the combined action of climate change and resource depletion is destroying the wealth of entire nations. 

We can't reform science in a single day, but I invite my colleagues to come down from the ivory tower and engage in informing the public about the real value and effectiveness of renewable energy. Do it. It is your duty as scientists, and as human beings. The battle is not lost, yet, but it will be if you don't engage in it. 


 h/t Anders Wijkman and Domenico Rutigliano (developer of the Leonardo program.)

(*) If you believe that the idea that renewables cannot support themselves is not a legend, write me. I'll send you a preprint of our recent paper on the subject. (ugo.bardi(whirlywhirl)unifi.it)

Tuesday, June 28, 2022

Renewable energy: the game of denigration continues

 


A new example of someone engaging into the popular game of denigrating solar energy:

https://thehonestsorcerer.medium.com/the-future-of-electricity-d227eac74ba8

Fortunately, this post does not appear on a peer reviewed journal, but this type of paper is becoming the run-of-the-mill of the discussion. It contains classical statements such as:

 "Energy captured and transformed by solar and wind cannot be compared to coal or natural gas used in power plants:"

Why that? Well, because,

"1. As mentioned above these sources can de-stabilize the grid’s voltage and frequency, and thus need to be balanced with either gas fired power plants or batteries

2. Weather dependent energy is available half of the time at best, so you need double, triple the nameplate capacity to make sure you have enough"

and therefore

 "solar and wind are mere additions to an ever growing fossil fuel platform. " and "we can safely say, that a nationwide stable electric grid (which is available on demand 24/7, just like today) is practically impossible to build based on renewables and battery power alone, or at least be maintained without the massive aid provided by fossil fuels.

And more of the same: no quantification, no calculation, no justification. The references are carefully chosen only among those that support the author's viewpoint. The many studies that prove that renewable energy does not need the support of fossil fuels are ignored. It is like that because it has to be like that. Typical.

The author signs his blog as "The Honest Sorcerer." There is no evidence that he is a scientist and, as I said, this is not a peer reviewed paper. The problem is that the public and decision-makers, alike, read this kind of papers. I know plenty of smart people, even scientists, who have completely swallowed this nonsense. And the more people believe in this assessment of renewable energy, the more the assessment spreads over the media.

The results can be tragic. In Italy, we have a large wind plant ready to be built, approved by all the agencies charged with approving it, and yet it cannot be built for the opposition of the cultural ministry of the Italian government. 

We are facing a failure of the communication strategy of the renewable industry. In time, it may be that people will understand how things stand but, at present, we need a more proactive stance to fight this kind of disinformation. That doesn't mean that the Honest Sorcerer and the others should be silenced, not at all, but that we should state more openly, more often, and more clearly, that renewable energy CAN sustain a complex civilisation, and not just that: renewable energy is cheaper, more efficient, less polluting, and better than fossil fuels in all aspects. But it is true that it will never work if we continue believing that it can't.



Friday, April 29, 2022

A Paradigm Shift in Energy Supply

 


The paper by Desing and Widmer on the "Sunflower Society" has been published today on "Biophysical Economics and Sustainability." It is about what we need most: a new paradigm for a new society that can abandon the old fossil paradigm!

Abstract

The worsening climate crisis impels society to accelerate climate action. The attainable speed of the energy transition is ultimately limited by the available energy to build the replacing renewable infrastructures. Decarbonizing the energy system by replacing dispatchable fossil with variable renewable power requires energy storage to match supply with demand. Current storage technologies are energetically expensive to build and operate, thus the demand for storage shapes the fastest possible transition and the probability to exceed 1.5 °C heating. This study explores and quantifies the effect of demanded storage and its technological progress on the fastest possible transition constrained only by energy. The simulation results using three exemplary storage technologies show that storage substantially delays the transition and increases the probability to exceed 1.5 °C heating. Technological progress, if materialized fast, can reduce energy costs of storage; however, storage demand remains a critical driver for climate risks. Consequently, minimizing storage demand through a supply-driven power system effectively reduces climate risks—a paradigm shift towards a solar-aligned “sunflower society”.



Friday, April 8, 2022

Renewables are the new Killer App

  

Image courtesy of Tsung Xu

It had to come, and it is coming. Silicon Valley is suddenly discovering that renewables are the next big thing, a new "killer app" poised to sweep the market and eliminate the obsolete, dirty, and uneconomic fossil fuels. Up to now, Silicon Valley's venture capitalists and entrepreneurs had been snubbing renewable energy. The common idea was that all killer apps are software. They are new fads on social media: things like Zuckerberg's "Meta," that nobody know what it is, but it is supposed to be something, Virtual, in any case.

But no, a killer app doesn't need to be purely virtual. Before the fashion of web things, the innovations that swept the market were not virtual. Think about that: personal computers, cell phones, even the Internet is not virtual, it is a real network of cables and connections. But it doesn't matter if a product is virtual or not. The important thing is the dynamics of the system. Things sold in a market are part of a system you may call CAS (complex adaptive system). These systems are subjected to rapid growth and rapid collapse as well. It is the way of the feedbacks. Positive feedback can generate a virtual killer app,  or it can affect a pretty real product that sweeps the market and kicks out the competition. 

This is a point that Silicon Valley types (who don't need to reside in Silicon Valley) understand very well: the secret of positive feedback is economies of scale (you can say that a product "scales"). What scales, grows. Which is what renewables are doing right now. They are scaling, generating the feedback that pushes them to grow.

Renewables as a disruptive and growing technology is hardly the way they are described in the mainstream debate. Most people see renewable energy as little more than a toy for "greens", even the most optimistic ones see them as something that may help us, but they are so limited that they will help us only if we accept to become abjectly poor.  And that, unfortunately, seems to be exactly what we are facing, especially if we accept a condition described in Newspeak with the term "saving energy." We'll be happy and own nothing. Sure! After all, who needs to eat to be happy? The brains of the people who think that fossils are indispensable are fossils, too.

Now, be careful. I am not telling you that we face a bright future that includes flying cars and weekends on the Moon, as it was the use in the 1950s. Not at all. What the pessimists say is not wrong. It is true that the fossils fuels are running out, that the climate is going to hell (almost literally), that the planet is overcrowded and, in addition, that instead of trying to do something useful, we rather enjoy playing the game of war. Homo sapiens (?), Yeah, sure....

What I am telling you is that the future will be different, disruptive, and rapidly changing. If you emphasize negative feedbacks, then you see imminent collapse -- which is in fact inevitable for all fossil fuel-based technologies, including that meta-technology we call "Industrial Economy". If you instead  emphasize positive feedback instead, you see how renewable energy is on the verge of wiping out all the old energy technologies, generating a whole new set of technologies. That will include a new meta-technology that perhaps we will continue to call "The Economy" but which will be completely different from the current one. Yes, the world will be different. Very different. 

The beauty of the situation is that the future is determined by these strongly non-linear feedback factors: at the same time we face enormous risks, but also fantastic opportunities. If the negative feedbacks win, it is the "Seneca Effect" ("growth is sluggish, but ruin is rapid"). If, instead, the positive feedbacks win, it will be the "Anti-Seneca Effect" ("ruin is sluggish, but growth is rapid"). 

This is the Seneca Curve, you probably know it already:


Then, take a look at the "Anti-Seneca" curve. It is the opposite

So, the positive feedbacks associated with renewable energy are giving us a unique opportunity in the history of humanity. We are facing one of those disruptive transitions that change everything, but it is not automatic that it will take place. We could collapse so quickly that there won't be time for renewable energy to develop to the point where it stands on its own. Or, we could remain so tenaciously attached to fossils that the transition to renewables is impossible, using for example bureaucratic, legal, etc.obstacles. Or climate change could sweep away human beings from this planet. But overall, there are good reasons to be optimistic. At least we have a fighting chance to avoid  returning to the Stone Age! 

To go more in depth into this subject, I suggest to you two documents. The first is an article by Tsung Xu, "A Guide to the Clean Energy Transition." It is a monumental work that examines many details of the renewable transition. One of its several good things is the dynamic view. Maybe you'll find it a little too optimistic and, indeed, the future is always full of surprises. But the article is correct, clear, comprehensive, and it includes an absolutely spectacular bibliography. 

The other article that I suggest to you is "Rethinking Climate Change" by James Arbib, Adam Dorr, and Tony Seba. It is another well documented study that also has a clear dynamic perspective of how things can grow in complex systems.

If you want to learn more, there are also several academic papers published in academic journals. There is one that myself and several colleagues are working on that has been recently submitted to the "IEEE Access" journal. Sorry that I can't share it yet, we have to wait for the definitive version. Coming in no more than a couple of months. 







Tuesday, October 19, 2021

Humankind's Tragic Mistake: How we Blew our Chances of Survival

 


A chronicle of how our civilization (if we want to call it in this way) blew its chance of survival. If we had invested in what really mattered, energy, we could have made it. But we preferred to invest in the toys we like so much: military hardware. And think that these 6 trillion dollars of hardware were used to make sure that some foreigners would send us the energy the US needed. With the same money, we could have had the same amount of energy produced at home. So much money thrown away, and that doesn't count the damage done on the receiving end. And now we are throwing away another good chunk of our remaining resources to follow the impossible hydrogen dream
 
An amazing article by Paul Gipe.

 
 

We Could Have 100% Renewable Electricity If We Had Invested in Wind and Solar Instead of War in the Middle East

Yes, the United States could be generating 100% of its electricity from renewable energy if we had used the money spent on our ill-advised wars in the Middle East to build wind and solar systems, as well as battery storage, here at home.

That’s the startling conclusion of a simple calculation my colleague Robert Freehling and I made after the latest reports on the economic cost of our wars in the Middle East.

This is, after all, not rocket science. Money spent on war–anywhere–is money lost. It’s not an investment in the future. It’s money quite literally that goes up in smoke.

In contrast, money spent on building wind and solar farms or putting solar systems on rooftops is money invested in the future that will be earning returns–in the form of electricity–for 20 to 30 years.

I’ve followed this topic since the invasion of Iraq in 2003. I posted my first article on this subject on July 4, 2005, and I’ve been updating that article periodically since then as the cost of our wars continued to grow.

On the anniversary of September 11th this year, news articles on the cost of the war in Afghanistan prompted me to take another look at our lost opportunities to invest in infrastructure here at home for the direct benefit of Americans.

What I learned shocked me. Using what I call a back-of-the-envelope method, I calculated that we could have installed enough wind turbines to more than provide 100% of our electricity with what we’d spent on war.

That just didn’t seem right. These are big numbers and it’s easy to get them wrong. After all, we’ve been told for decades that it’s simply too expensive to install that many wind turbines and solar panels. We could never afford it, critics warned.

So I called my colleague and renewable energy analyst Robert Freehling for help. I’ve relied on Freehling to sort out such thorny problems in the past.

His conclusion? Yes, we could be generating 100% of our electricity in this country from just wind and solar; that is, not counting existing hydro, geothermal, or biomass generation. Freehling, though, goes even further. We would be generating so much renewable electricity that we could store huge amounts in batteries–electricity storage that also would be paid for with our “war savings.”

How did we reach such a conclusion? Did we use a supercomputer to calculate all the possible permutations of what a renewable electricity supply would look like?

No. We kept it simple. We looked at two respected estimates of what our wars have cost in economic terms to the US taxpayer, not what they’ve cost in human suffering, nor what they’ve cost the countries on the receiving end of our expenditures.

The National Priorities Project calculates that the wars in the Middle East since 2001 have cost $4.9 trillion, a sum that continues to rise. The Watson Institute for International and Public Affairs at Brown University estimates $5.9 trillion through Fiscal Year 2019. Their latest estimate raises that to $6.4 trillion through FY 2020.

To paraphrase Senator Everett Dirksen, “A trillion here, a trillion there and pretty soon it adds up to real money.” For a sense of perspective, one billion is 1,000 million. Thus, a trillion is one million million. That’s a one with twelve zeros behind it–a very big number.

We made no attempt to match the annual costs of the wars to the deployment of wind and solar. Again, we kept it simple. We simply prorated the costs over two decades with the exception explained below.

Freehling’s simple spreadsheet model assumes ramping up installations from a low base over a decade to reflect the necessity of scaling up manufacturing to meet the demand. Then he held installations constant for another decade until he reached 100% renewable generation from wind and solar. If we had started in 2001, the whole conversion would be accomplished by 2020.

Shockingly, there was a lot of money left over. So Freehling plowed the remainder into battery storage using the same approach as with wind and solar. He scaled installations up from a low base until the industry was likely to reach maturity.

Existing renewable generation from hydro, geothermal, and biomass was then shunted into the mass of new storage. Batteries would be used to equalize the grid when winds were light or the sun had set. The remainder could then be used to charge electric vehicles.

Wind and solar are cheap today. That was not so, two decades ago. Freehling accounts for this by using historical figures for the cost of wind and solar.

He dropped the initial cost of wind from $2,500 per kilowatt of installed capacity in the year 2000 to about $1,400 today.

Solar has seen a dramatic drop in cost during the past two decades. Freehling used $12,000 per kilowatt as the cost of solar capacity in 2000 and dropped it to nearly $1,500 per kilowatt in 2020.

We apportioned how much wind and how much solar were built, based on the work of my French colleague Bernard Chabot. He found that for a temperate climate, such as the United States, the optimum mix of generation is 60% wind and 40% solar energy. This mix minimizes the amount of storage needed.

Batteries are still expensive. The cost of battery storage, however, has fallen 80% in the past decade alone notes Freehling. He suggests that the cost of battery storage would have fallen even more rapidly through economies-of-scale if we had begun deploying them at scale sooner. Batteries for Electric Vehicles (EVs) would also be cheaper today if we had plowed some of our war savings into battery development.

Here in California, the Independent System Operator (Cal-ISO) requires 4-hours of storage for it to reliably meet peak demand.” Our scenario calls for one million megawatts of wind and another one million megawatts of solar. This scenario uses some 700,000 MW of batteries to store 3 terawatt-hours (TWh) or 3 billion kilowatt-hours of electricity. The amount of storage is approximately enough to meet the peak electricity demand for the entire United States for a period of 4 hours.

All together, wind, solar, and storage would be capable of providing 4,400 TWh per year–the amount of electricity generated annually in the United States–for an investment of $6 trillion over two decades.
The United States produces more than 700 TWh per year–about 17% of annual electricity generation–from existing wind, solar, hydro, geothermal, and biomass. Existing renewables would be capable of powering more than one-third to as much as one-half of the entire US passenger vehicle fleet with electricity.

If we had instead invested the $6 trillion we squandered on war in the Middle East, we would, two decades later, have made our grid more resilient with battery storage, and be generating 100% of our electricity with wind and solar. Moreover, existing sources of renewable energy would be sufficient to power a substantial portion of our passenger cars with clean, renewable electricity.

Incredible.

What a lost opportunity.
———-
Paul Gipe is a renewable energy analyst and the author of Wind Energy for the Rest of Us. He has worked with wind energy for the past four decades.
 
 
 
 

Friday, October 15, 2021

The New Paradigm of Renewables: if we want something to change, we need to change something

 



We can make it: the latest results of the analysis of the performance of renewable energy, photovoltaic and wind, show that their efficiency in terms of energy return on investment (EROI) is considerably larger than that of fossil fuels. It is becoming clear, too, that renewables don't need rare and disappearing mineral resources: the infrastructure to build them and maintain them needs only abundant and recyclable minerals: silicon, aluminum, and a few more that can be efficiently recycled (rare earths and lithium). 

In other words, renewables can't be considered anymore as an emergency replacement for the depleting and polluting fossil fuels, but as a true step forward. They are the new, "disruptive" technology that people expected nuclear energy to be, but that never was.  

Tony Seba -- sharp as always -- has diffused the idea of renewables as the new energy revolution. Seba's ideas have been popularized by Nafeez Ahmed in a two parts series, (Part 1 and Part2). These assessments may be too optimistic in some regards, but they do note how things are changing. We have a chance, a fighting chance, to falsify the scenarios that saw an irreversible decline -- actually a collapse -- of the industrial civilization during the next few decades. 



Can we really make it? It is a chance, but not a certainty. The quantitative calculations made by Sgouridis, Csala, and myself indicate that we can only succeed if we invest in renewables much more than what we are investing nowadays. If we maintain the current trends, renewables will be able to slow down the decline, but not avoid a "dip" in the civilization curve. Then, we will re-emerge on the other side in a new and cleaner world. But we might not be able to avoid total collapse if we don't keep investing a significant fraction of the available resources in the transition.

Unfortunately, this idea faces stiff opposition from various industrial lobbies, and especially from a diehard section of environmentalism that remains stuck to ideas that have been shown several times to be ineffective: exhortations for good behavior, individual energy saving, carbon taxes, and the like. All these things have been proposed for decades and failed to make a dent in the predominance of fossil fuels and the emissions of greenhouse gases. In part, the opposition takes the form of wasting resources for technologies that are known to be inefficient (carbon sequestration) or useless (hydrogen), or both things at the same time. We need to do better than that. We need something different. 

If we want something to change, we need to change something. 

We can make it!!




Friday, May 14, 2021

A Concise History of the Concept of "Hydrogen Economy"

 

\    
The concept of "hydrogen economy" has a distinct "1960s" feeling. It is the idea of maintaining the lifestyle of the post-war period, with suburban homes, green lawns around them, two cars in every garage,  and all that. The only difference would be that this world would be powered with clean hydrogen. It is a dream that started with the dream of cheap and abundant energy that nuclear plants were believed to be able to produce. The idea changed shape many times, but it always remained a dream, and probably will continue to be so in the future.

 by Ugo Bardi

Before discussing the history of the concept of "hydrogen economy" we should try to define it. As you should expect, there are several variations on the theme but, basically, it is not about a single technology but a combination of three: 1) energy storage, 2) energy vectoring, and 3) fuel for vehicles. 

This "hydrogen triad" misses the fundamental point of how hydrogen should be created. Often, that's supposed to be done using electrolysis powered by renewable energy but, alternatively, from natural gas, a process that would be made "green" by carbon sequestration. There are other variations on the theme, all have in common being multi-step processes with considerable efficiency losses. And all have in common the fact of never having been proven to be economically feasible on a large scale.

Indeed, the immediate problem with replacing fossil fuels is not vectoring or storage, surely not powering individual cars. It is the enormous investments needed to build up the primary production infrastructure that would be needed in terms of solar or wind plants (or nuclear), which don't seem to be materializing fast enough to generate a smooth transition. Surely, not growing fast enough to be compatible with a relatively inefficient infrastructure based on hydrogen. Nevertheless, the "hydrogen economy" seems to be rapidly becoming the center of the debate

Indeed, the Google Ngrams show two distinct peaks of interest for the concept, that grew and rapidly faded away. But it seems clear that a third cycle of interest is starting to appear 

So, why this focus on a technology that lacks the basic elements that would make it useful in the near term? As it is often the case, ideas do not arrive all of a sudden, out of the blue. If we want to understand what made hydrogen so popular nowadays, we need to examine how the idea developed over at least a couple of centuries of scientific developments.

That hydrogen could be used as fuel was known from the early 19th century and already in 1804, the first internal combustion engine in history was powered by hydrogen. The first explicit mention of hydrogen as an energy storage medium goes back to John Haldane in 1923, where he even discussed the possibility of using "oxidation cells," what we call today "fuel cells," invented by William Grove already in 1838.

But these ideas remained at the margins of the discussion for a long time: no one could find a practical use for a fuel, hydrogen, that was more expensive and more difficult to store than the conventional fossil fuels. Things started to change with the development of nuclear energy in the 1950s, promising a new era of abundance. But, in the beginning, hydrogen found no role in the nuclear dream. For instance, you wouldn't find any mention of hydrogen as an energy carrier in the "manifesto" of the atomic age that was the 1957 TV documentary by Walt Disney, "Our Friend, the Atom.

In the book derived from the movie, there was an entire chapter dedicated to how nuclear energy was going to power homes, ships, submarines, and even planes. But nothing was said about the need for fuels for road transportation, with the atomic car just briefly mentioned as "not a possibility for the near future." The engineers of Ford thought otherwise when, in the same year (1957) they proposed the concept of a nuclear-powered car, the Ford Nucleon. But nobody really believed that such a car could ever be produced. At the beginning of the nuclear age, nobody really saw the need or the possibility of entirely replacing fossil fuels from the world's energy infrastructure.

The idea of hydrogen as an element of the new nuclear infrastructure started gaining weight only in the 1960s, in parallel with the problems that the nuclear industry was experiencing. With the oil crisis of 1973, the nuclear industry seemed to have a golden opportunity to become the main supplier of the world's energy, but it had already run into trouble. The assessments of the world's uranium ores showed that mineral uranium was not abundant enough to support a large expansion of nuclear energy as envisaged at that time. The industry had a technological solution: "fast" reactors that could be used to "breed" fissile materials in the form of plutonium. The fast reactor technology could have postponed "peak uranium" of at least a few thousand years. 

Fast reactors turned out to be more expensive and complex than expected, but the problem was not technological but strategic. The "plutonium-based economy" would have generated a gigantic proliferation problem. It was clear to the Western leaders that diffusing this technology all over the world put them at risk of losing the monopoly of weapons of mass destruction that they shared with the Soviet Union. 

So, if fast breeders were to be built, they needed to be only a few very large ones, to allow tight military control and also to exploit economies of scale. But that led to another problem: how to carry the energy to consumers? Electrical lines have a distance limit of the order of a thousand km, and can hardly cross the sea. It was at this point that the idea of hydrogen as an energy carrier crept in. It could have been used to distribute nuclear energy at a long distance without the need to distribute the reactors themselves. 

It was a concept discussed perhaps for the first time in 1969 by the Italian physicist Cesare Marchetti, He was, (now he is in his 90s) a creative scientist who proposed that just 10 gigantic fast reactors of a few TW each would have been enough to power the whole world. These reactors could be built on some remote oceanic islands, where the water needed for cooling would have been abundantly available. The uranium needed as a fuel could be simply extracted from seawater. Then, the energy would have been transformed into liquid hydrogen at low temperature and carried everywhere in the world by hydrogen carrier ships. In the image from one of Marchetti's papers, you see how an existing coral atoll in the South Pacific Ocean, Canton Island, could be converted into a Terawatt power nuclear central.

To paraphrase the theme of Disney's "nuclear manifesto" of 1957, the hydrogen genius was now out of the bottle. In 1970, John Bockris, another creative scientist, coined the term "hydrogen-based economy." In the meantime, NASA had started using hydrogen-powered fuel cells for the Gemini manned spacecraft program. It was only at this point that the "hydrogen car" started being proposed, replacing in the public's imagination the obviously unfeasible nuclear-powered car. It was a daring scheme (to say the least), but not impossible from a purely technological viewpoint.

But, as we all know, the dreams of a plutonium economy failed utterly, together with the whole nuclear industry. We can see in the Ngrams how the concept of "fast breeder" picked up interest and then faded, together with that of nuclear energy. The reasons for the downfall are complex and controversial but, surely, can't be reduced to accusing the "Greens" of ideological prejudices against nuclear energy. Mainly, the decline can be attributed to two factors: one was the fear of nuclear proliferation by the US government, the other the opposition of the fossil fuel industry, unwilling to cede the control of the world's energy production to a competitor. Whatever the causes, in the 1980s the interest in a large expansion of the nuclear infrastructure rapidly declined, although the existing plants remained in operation.

And hydrogen? The downfall of nuclear energy could have carried with it also the plans for hydrogen as an energy carrier, but that didn't happen. The proponents repositioned the concept of "hydrogen economy" as a way to utilize renewable energy. 

One problem was that renewable energy, be it solar, wind, or whatever, is inherently a distributed technology, so why would it need hydrogen as a carrier? Yet, renewables had a problem that nuclear energy didn't have, that of intermittency. That required some kind of storage and hydrogen would have done the job, at least in theory. Add that at in the 1980s there were no good batteries that could have powered road vehicles, and that made the idea of a "hydrogen car" powered by fuel cells attractive. Then, you may understand that the idea of a hydrogen-based economy would maintain its grip on people's imagination. You can see in the figure (from Google Ngrams) how the concept of "hydrogen car picked up interest. 


It was a short-lived cycle of interest. It was soon realized that the technical problems involved were nightmarish and probably unsolvable. Fuel cells worked nicely in space, but, on Earth, the kind used in the Gemini spacecraft, were rapidly poisoned by the carbon dioxide of the atmosphere. Other kinds of cells that could work on Earth were unreliable and, more than that, required platinum as a catalyst and that made them expensive. And not just that, there was not enough mineral platinum on Earth to make it possible to use these cells as a replacement for the combustion engines used in transportation. In the meantime, oil prices had gone down, the crises of the 1970s and 1980s seemed to be over, so, who needed hydrogen? Why spend money on it? The first cycle of interest in the hydrogen-based economy faded out in the mid-1980s. 

But the story was not over. Some researchers remained stubbornly committed to hydrogen and, in 1989, Geoffrey Ballard developed a new kind of fuel cell that used a conducting polymer as the electrolyte. It was a significant improvement, although not the breakthrough that it was said to be at the time. Then, in 1998, Colin Campbell and Jean Laherrere argued that the world's oil resources were being rapidly depleted and that production would soon start declining. It was a concept that, later on, Campbell dubbed "Peak Oil." In 2001, the attacks on the World Trade Center of New York showed that we lived in a fragile world where the supply of vital crude oil that kept civilization moving was far from guaranteed. Two years later, there would come the invasion of Iraq by the US, not the first and not the last of the "wars for oil." 

All these factors led to a return of interest in hydrogen energy, stimulated by the popular book by Jeremy Rifkin, "The Hydrogen Economy," published in 2002. The new cycle of interest peaked in 2006 (again, look at the Ngrams results, above), and then it faded. The problems that had brought the first cycle to its end were still there: cost, inefficiency, and unreliability (and not enough platinum for the fuel cells). Besides, a new generation of batteries was sounding the death knell for the idea of using hydrogen to power vehicles. Look at the compared cycles of hydrogen and of lithium batteries.

 Note the different widths of the peaks. It is typical: technologies that work (lithium) keep being mentioned in the scientific literature. Instead, technologies that are fads (hydrogen) show narrow peaks of interest, then they disappear. You can't just keep telling people that you'll bring them a technological marvel without ever delivering it. 

At this point, you would be tempted to say that hydrogen as an energy carrier and storage medium is a dead hydrogen airship in the water. But no, the Ngram data show that we are going toward a third cycle. The media confirm this impression. The discussion on the hydrogen economy is restarting, research grants are being provided, plans are being made. 

Did something change that's generating this new cycle? Not really, the technologies are still the same. Surely there have been marginal improvements, but much more significant improvements have been with batteries and, in comparison, hydrogen remains an expensive and inefficient method to store energy. So, why this new round of interest in hydrogen?

The vagaries of memes are always open to interpretation, and, in this case, we can suppose that one of the elements that push hydrogen back to the global consciousness lies in its origins of supporting technology for a centralized economy, the one that would have resulted from the widespread use of fast breeder reactors. In this sense, hydrogen is in a different league from that of most renewable technologies that exist and operate over a distributed network. 

So, even if the nuclear industry is today a pale shadow of what it was in the 1960s, there remains the fossil fuel industry to champion the role of centralized energy supply. And, obviously, it is the fossil fuel producers, who produce hydrogen from fossil sources, those who are going to benefit most by a return to hydrogen, no matter how short-lived it will be. 

There may be another, deeper, reason for the success of the hydrogen meme with the public. It is because most people, understandably, resist change even when they realize that change is necessary. So, replacing fossil fuels with renewables is something that will force most of us to radical changes in our lifestyle. Conversely, hydrogen promises change with no change: it would be just a question of switching from a dirty fuel to a clean one, and things would remain more or less the same. We would still fill up the tanks of our cars at a service station, we would still have electric power on demand, we would still take two weeks of vacation in Hawai'i once per year. 

Unfortunately, people change only when they are forced to and that's what's probably going to happen. But, for a while, we can still dream of a hydrogen-based society that seems to be curiously similar to that of the US suburbs of the 1960s. Dreams rarely come true, though.