An early incarnation of the most famous Japanese monster. Source
The concept that "renewables will never be able to..." takes many forms, perhaps the most common one being that they provide today just a minor fraction of the energy produced by fossil fuels. And, hence, this fraction is destined to remain small. I often use the joke that it is the same as saying that Godzilla couldn't be but a small beast judging from the size of its egg.
A recent restatement of the Godzilla's egg problem can be found in the book by Vaclav Smil, "How the World Really Works." (Viking, 2022). Honestly, it is a disappointing book, especially comparing its content with the ambitious title. Not that there is anything specifically wrong with it. Smil has excellent capabilities of reporting quantitative data; his approach is simple and direct; a good example is his analysis of the average risks faced by an ordinary person in terms of their probability and frequency.
But this book? Well, it reports a lot of data, but all in a conversational form, not a single diagram, not even a table. Maybe it is the way a book has to be if it has to become a "New York Times International Bestseller." After all, it is known that most people cannot understand cartesian diagrams. Yet, data are not sufficient if they are not interpreted in a correct time frame, and Smil's analysis is almost always static; it tells you about the current situation but not how we arrived at it nor what we can expect in the future.
The problem is especially visible with Smil's treatment of renewable energy. The whole discussion on energy is weak, to say nothing of the typical mistake of reporting that, during the oil crisis of the 1970s, OPEC (the organization of oil exporting countries) "set the prices" of oil. OPEC does not and cannot do anything like that, although its management of oil production surely affects prices.
About renewables, the main point that Smil makes is that, today, they represent only a small fraction of the world's energy production. Considering the huge task ahead, he concludes that renewables would need a very long time to replace fossil fuels, if they ever will. The main problem in this discussion is that Smil does not use the "EROI" (energy returned for energy invested) parameter. This parameter tells you that, nowadays, renewable energy is more efficient and yields more than fossil fuels and any other energy production technology. Missing this point, the whole discussion is flawed. Renewables can, and will grow rapidly, at least in the short term future. And, in the medium and long run they are destined to replace the inferior technology of fossil fuels. The same is true for many other data reported; they remain scarcely useful if not analyzed in a way that gives some idea of how they are going to evolve and change. Paradoxically, what this book lacks is exactly what the title promises: an explanation of how the world works.
The weakness of Smil's arguments does not mean that renewables will quickly replace fossil fuels. One thing is what is feasible, and another is what can actually be done within the limitations of time and resources. For some dynamic scenarios of their possible growth, you may take a look at a paper that I wrote together with my colleagues Sgouridis and Csala. It is a little old (2016), but its basic methods and conclusions are still valid. And the conclusion is that it is possible to replace fossil fuels with renewables, but not easy. What we can say at present is that renewables are growing fast: will they hatch into a full-size Godzilla, able to overcome the obstacles it faces?
__________________________________________________________
If you really want to know how the world works and what role energy has in it, you can learn a lot more from Carey King's book "The Economic Superorganism" (Springer 2021). It is the opposite of Smil's book in terms of methodology. King's approach is based on the fundamental tenets of biophysical economics: it is an attempt to explain how the world's economic metabolism functions and dynamically evolves. Hence the title, "superorganism," a way to define the economic system in terms akin to that of a biological system (I prefer to use the term "holobiont" but it is the same idea.)
The idea that the economy is a superorganism derives from the concept that energy drives the economy, just like it does for living beings. The Economic Superorganism book provides stories, data, science, and philosophy to guide readers through the arguments from competing narratives on energy, growth, and policy. Among many other good things, it is remarkable for its honest attempt to present different points of view in a balanced way. It also helps to distinguish the technically possible from the socially viable, and understand how our future depends on this distinction. At global scales, the combination of resource-rich environment, coordination in groups, corporations and nations, and the maximization of financial surplus, tethered to energy and carbon, results in a mindless, energy-hungry, CO2 emitting Superorganism (a concept also examined in depth by Nate Hagens).
Now, the superorganism is in trouble. Just like living beings, it risks dying of starvation. Could it be a good thing, considering how the economic leviathan has damaged more or less everything in the biosphere? Or perhaps it is still possible to tame the big beast and force it to behave a little better. Maybe. Even though we may all be just cells of a huge beast, there is a lot that you can learn from this book. Unfortunately, even though it is clearly written and well argumented, it will never be a New York Times Bestseller. And that may be one of the reasons why the superorganism deserves to collapse.
And how about renewables? King's book doesn't take a yes/no position, and correctly so. It provides instead a complete discussion of the various facets of the issue. Just the description of the value of the EROI concept is worth the whole book. And, eventually, we'll go where the superorganism takes us.
In a culture of competition with renewables competing with fossil fuels, any replacement would mean many deaths and injuries. The godzilla egg requires a culture of cooperation to reach adulthood. NS1 and 2 tell us that this will not happen.
ReplyDeletealla fine vinceranno le rinnovabili per esaurimento fossile, ma con molti miliardi di morti.
Delete